Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Convegno SISVet ; 2022.
Article in English | CAB Abstracts | ID: covidwho-2279456

ABSTRACT

This paper describes the pathogenesis and immunology of Macaca mulatta, Macaca fascicularis, ferrets, Syrian golden hamsters (Mesocricetus auratus), mice, cats, mink, pigs and rabbits used as models for SARS-CoV-2 infection.

2.
Zoonoses ; 1(6), 2021.
Article in English | CAB Abstracts | ID: covidwho-2025742

ABSTRACT

COVID-19, a disease caused by SARS-CoV-2 that produces major symptoms of pneumonia, has been a disaster worldwide. The traceability of SARSCoV- 2 and the discovery of susceptible animal species is crucial to halt viral transmission and explore the mechanism of cross-species transmission. We selected 82 representative ACE2 sequences from the 1000 sequences with the closest homology to the hACE2 protein. All selected ACE2 proteins were subjected to homology modeling. Potential natural and intermediate hosts, as well as animal species susceptible to SARS-CoV-2, were analyzed systematically by calculation of the binding free energy of ACE2 protein to the RBD of SARSCoV- 2. Primates, some wild Felidae, civets, goats, spotted hyenas and golden hamsters are susceptible to SARS-CoV-2 and may be potential intermediate hosts, whereas pangolins, birds and reptiles are unlikely to be intermediate hosts. Mice, rats and guinea pig are not susceptible to SARS-CoV-2. Given their possible susceptibility, non-human primates, goats and golden hamsters could potentially be used as experimental models to examine SARS-CoV-2 infection without transgenesis. Herein, possible candidates for the natural and intermediate hosts of SARS-CoV-2 are suggested, to provide guidance for subsequent studies.

3.
Gigascience ; 112022 05 28.
Article in English | MEDLINE | ID: covidwho-1873910

ABSTRACT

BACKGROUND: The Syrian hamster (Mesocricetus auratus) has been suggested as a useful mammalian model for a variety of diseases and infections, including infection with respiratory viruses such as SARS-CoV-2. The MesAur1.0 genome assembly was generated in 2013 using whole-genome shotgun sequencing with short-read sequence data. Current more advanced sequencing technologies and assembly methods now permit the generation of near-complete genome assemblies with higher quality and greater continuity. FINDINGS: Here, we report an improved assembly of the M. auratus genome (BCM_Maur_2.0) using Oxford Nanopore Technologies long-read sequencing to produce a chromosome-scale assembly. The total length of the new assembly is 2.46 Gb, similar to the 2.50-Gb length of a previous assembly of this genome, MesAur1.0. BCM_Maur_2.0 exhibits significantly improved continuity, with a scaffold N50 that is 6.7 times greater than MesAur1.0. Furthermore, 21,616 protein-coding genes and 10,459 noncoding genes are annotated in BCM_Maur_2.0 compared to 20,495 protein-coding genes and 4,168 noncoding genes in MesAur1.0. This new assembly also improves the unresolved regions as measured by nucleotide ambiguities, where ∼17.11% of bases in MesAur1.0 were unresolved compared to BCM_Maur_2.0, in which the number of unresolved bases is reduced to 3.00%. CONCLUSIONS: Access to a more complete reference genome with improved accuracy and continuity will facilitate more detailed, comprehensive, and meaningful research results for a wide variety of future studies using Syrian hamsters as models.


Subject(s)
Chromosomes, Mammalian , Mesocricetus , Animals , Chromosomes, Mammalian/genetics , Genome , High-Throughput Nucleotide Sequencing/methods , Mesocricetus/genetics , Whole Genome Sequencing
4.
Front Pharmacol ; 11: 579330, 2020.
Article in English | MEDLINE | ID: covidwho-1389228

ABSTRACT

The Syrian golden hamster (Mesocricetus auratus) has recently been demonstrated as a clinically relevant animal model for SARS-CoV-2 infection. However, lack of knowledge about the tissue-specific expression pattern of various proteins in these animals and the unavailability of reagents like antibodies against this species hampers these models' optimal use. The major objective of our current study was to analyze the tissue-specific expression pattern of angiotensin-converting enzyme 2, a proven functional receptor for SARS-CoV-2 in different organs of the hamster. Using two different antibodies (MA5-32307 and AF933), we have conducted immunoblotting, immunohistochemistry, and immunofluorescence analysis to evaluate the ACE2 expression in different tissues of the hamster. Further, at the mRNA level, the expression of Ace2 in tissues was evaluated through RT-qPCR analysis. Both the antibodies detected expression of ACE2 in kidney, small intestine, tongue, and liver. Epithelium of proximal tubules of kidney and surface epithelium of ileum expresses a very high amount of this protein. Surprisingly, analysis of stained tissue sections showed no detectable expression of ACE2 in the lung or tracheal epithelial cells. Similarly, all parts of the large intestine were negative for ACE2 expression. Analysis of tissues from different age groups and sex didn't show any obvious difference in ACE2 expression pattern or level. Together, our findings corroborate some of the earlier reports related to ACE2 expression patterns in human tissues and contradict others. We believe that this study's findings have provided evidence that demands further investigation to understand the predominant respiratory pathology of SARS-CoV-2 infection and disease.

SELECTION OF CITATIONS
SEARCH DETAIL